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A semi-analytical numerical study was performed to simulate the development of a 
vortex ring in a stratified and/or shearing environment. Practical applications of 
results of this study can be found in turbulence modelling and in studies of plumes 
and wakes. The objective is to  follow exactly the evolution of a vortex ring so that the 
three-dimensional vortex-stretching mechanisms due t o  stratification and the shear 
effects, respectively, can be understood. 

The basic formulation consists of the solution of the vorticity equation in a stratified 
medium. The approach adopted is unique in that discrete vortex elements are used 
and arbitrary nonlinear interactions are allowed (therefore three-dimensional effects) 
among various vorticity generators. One of the two fundamental assumptions in this 
approach is that the vorticity is allowed t o  be generated only along the density dis- 
continuity. The second assumption is that, while the vorticity carried by the vortex 
ring is modelled by vortex elements tangential to the vortex loop (which was a vortex 
ring initially), the vorticity generated by stratification effects is modelled by long 
vortex lines parallel to  the axis of the vortex ring. This limits the validity of the 
present calculation to high Froude number flow. 

Numerical stability is guaranteed by the finite core radius for each discrete vortex 
element and uniform spacing between them; the former is determined by consideration 
of the momentum integral over the vortex-ring plane. The latter is determined by a 
cubic spline interpolation method which conserves the circulation and centroids of 
the vorticity. The velocity of each vortex element is determined by the discretized 
Biot-Savart law, and motion of the vortex loop is calculated by a predicator-corrector 
time integration method. 

Calculations were carried out for both momentum-carrying and momentumless 
vortex rings. A particular two-dimensional case gives good agreement with K&rm&n’s 
theory. The evolution of the vortex loop reveals a process in which only the vorticity 
normal to the stratification is conserved; the remaining vorticity is dissipated through 
a simulated viscous dissipation. Evolution of a vortex loop on a shear layer reveals 
a vortex-loop rotation rate equal to  the velocity shear, and a twisting motion due to 
the Magnus force which can lead to  the turbulence energy cascade phenomenon. 
Numerical results demonstrate effects of each individual vorticity source and observed 
phenomena can be explained. 
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1. Introduction 
It is well known in turbulence theory that energy is transferred from large to small 

scales through the three-dimensional vortex-stretching mechanism. Although many 
explanations have been given (Tennekes & Lumley 1972, p. 91)) there seems to be 
little quantitative support. It has also long been understood that jets and wakes can 
be idealized by a series of vortex rings, but few studies have been carried out in terms 
of three-dimensional vorticity theory. I n  a shearing environment, the Magnus force 
plays a role which can only be studied numerically. I n  a stratified medium, the three- 
dimensional vortex-stretching mechanism is further complicated by the fact that the 
stratified medium can generate vorticity as soon as it is disturbed from its equilibrium 
position. 

The objectives of this study are first to demonstrate the effects of stratification and 
shear on a single vortex ring, then to identify the basic physical forces present and 
finally, perhaps, to shed some light on the turbulence decay process and the evolution 
of plumes, jets and wakes in a stratified and shearing environment. 

The basic approach applied here is to solve the vorticity equation in a stratified 
medium. For high Reynolds number AOWS, the diffusion time Z2/v, where v is the 
kinematic viscosity and I is any length scale, is long relative to the time interval of 
interest. Vorticity is concentrated in isolated rotational flow regions, which can there- 
fore be idealized as discrete vortex elements. The numerical approach adopted here 
is unique in that discrete vortex elements are used and arbitrary nonlinear interactions 
among various vorticity generators (and therefore three-dimensional effects) are 
allowed. 

Historically, the first such numerical calculation using a two-dimensional discrete 
vortex element method was made by Rosenhead (1931). Since then, the same method 
has been applied to various shear flows and is summarized in a literature survey by 
Fink & Soh (1974). Of these flows, the major ones are two-dimensional turbulence 
(Chorin 1973), three-dimensional laminar flows (Leonard 1974; 1975, private com- 
munication) and stratified flows in both homogeneous and porous media (Thomson & 
Meng 1974). 

The basic advantage of the discrete vortex element method over the finite-difference 
method for solving high Reynolds number shear and stratified flows is as follows. 
The method lends itself to simulation of flows of arbitrarily high Reynolds number. 
It eliminates the necessity to solve for the irrotational flow domain, which remains 
passive. It provides the capability for simulating arbitrary stratification effects, i.e. 
it can simulate the limiting case of a sharp density interface and it eliminates the 
Courant-Friedrichs-Lewy (CFL) condition, which imposes a time-step limitation 
based upon the arbitrarily chosen mesh size instead of the physical time scale based 
upon vortex interactions. 

One of the two fundamental assumptions in this approach is that vorticity is 
allowed to be generated only along the density discontinuity. The second assumption 
is that while the vorticity carried by the vortex ring is modelled by vortex elements 
tangential to the vortex loop (which was a vortex ring initially), the vorticity generated 
by stratification effects is modelled by long vortex lines parallel to the axis of the 
vortex ring. This limits the validity of the present calculation to high Froude number 
flow. 
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J 
FIGURE 1. A vortex line element. 

Numerical stability is guaranteed by the finite core radius r, for each discrete vortex 
element and by uniform spacing between them; the former is determined by con- 
sideration of the momentum integral over the vortex-ring plane. The latter is deter- 
mined by a cubic spline interpolation method which conserves the circulation and 
centroids of the vorticity. The velocity of each vortex element is determined by the 
discretized Biot-Savart law, and motion of the vortex loop is calculated by a predi- 
ca tor-corre c tor time integration met hod. 

Calculations were carried out for both momentum-carrying and momentumless 
vortex rings. The finite core radius was chosen to match the fluid velocity profile in 
the wake of a towed body for the first case and, similarly, to match the wake profile 
of a self-propelled body for the second case. In  a stratified medium, the evolution of 
the vortex loop reveals a process in which only the vorticity normal to the stratification 
is conserved; the remaining vorticity is reduced once the separation distance between 
opposite sides of the vortex loop falls within the core radius. Without stratification, 
evolution of the vortex loop on a shear layer reveals a vortex-loop rotation rate equal 
to the velocity shear, and a twisting motion due to the Magnus force which can lead 
to the energy cascade phenomenon of turbulence theory. In  either case, the vortex 
loop is ‘collapsed’ and forms ‘tip vortices ’. For the two-dimensional stratification 
but without shear, the growth rate of the vortex loop agrees with both KQrm&n’s 
theory and Wu’s experimental data. 

2. Formulation 
2.1. Basic physical modelling 

The fundamental approximations made in this numerical study are that the flow is 
inviscid and incompressible and the Boussinesq approximation is applicable, that the 
discontinuous density interface is identifiable by vortices and stratification effects 
may be modelled by infinitely long vortex lines for the case FD = UlND 9 1, and 
finally, that turbulent diffusion a,ffects the vortex coie structure only. 

Since the common vortex interaction mechanism is well described in the literature, 
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FIGURE 2. A vortex line element lying on a density interface. 

FIGURE 3. Geometric relationship between the rate of change of 
circulation and the slope of the interface. 

we shall concentrate only on the added feature of this study, i.e. the modelling of the 
stratified flow in terms of discrete vortex elements. 

In  stratified flow, vorticity varies not only as a result of vortex stretching and 
turbulent diffusion, but also owing to the density stratification; therefore the circula- 
tion carried by vortex lines is no longer constant as it is in a non-stratified medium 
according to Kelvin's theorem. To derive the time rate of change of the vortex-line 
circulation, we begin with the following set of equations: 

a o p t  = - v x (p-lVp) + (0. V)u + YV2W, (1)  

v .u  = 0, vp p,g. (21, (3) 

Defining the circulation along the infinitely long vortex lines as K = w . A, where A is 
the elemental area normal to o (figure l), we find the time rate of change of K from 
the equation 

dK d o  dA 
at at dt ' 
- = A.-+co.-  (4) 
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FIUTJRE 4. Co-ordinate system for the case of a wake on a sharp thermocline. 

The first term can be obtained by multiplying ( 1 )  by A and the second term by in- 
voking the incompressibility condition. Figure 1 shows a vortex element of area A 
and length d l ;  the fluid volume A . d l  contained in the tube should be constant with 
respect to time, i.e. d l .  (dA/d t )  = - A .  (ddl/dt), so that a. (dA/dt) = - (K/dl)d(dl)/dt. 
Then the last term in (4) is simply the stretching term, i.e. (o/dZ)d(dZ)/dt E ( w . V ) u .  
This equation and (1)  reduce (4) to 

dK/dt = - A . V x  ( p - ' V p ) + ~ A . V 2 a .  ( 5 )  

For convenience, we can rewrite ( 5 )  in a slightly different form. Take an interface 
(see figure 2) on which the vortex line K lies where the elemental area is denoted by a 
vector A parallel to  K; if we look along K, we have figure 3. A portion of A lies in a 
medium with density po + A p ;  the remaining, upper portion has density po.  Applying 
( 5 )  over the area A and neglecting diffusion, we then have 

dK 
- dt = - I A d A . V x  ( j V p ) ,  

or by Stokes' law 

fi = -$ (A V p )  . d L ,  
dt C P  

where the contour c is followed anticlockwise. If the fluid is assumed to be in hydro- 
static equilibrium so that V p  z p,g, then 

which is the equation necessary for advancing the circulations K ~ ,  

2.2.  Formulation of the numerical procedure 

In  this subsection we shall outline the numerical procedure for finding the motion of 
vortex loops in a stratified medium for the case FD % 1 .  If the vortex loop is taken as 
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FIGURE 6 .  Discretization of a vortex loop on a sharp thermocline. 

the boundary of the cross-section of a wake or jet, figure 4 illustrates the co-ordinate 
systems and the idealized physical problem. 

Figure 5 shows a vortex loop located on a sharp thermocline with constant density 
inside the loop and with an ambient density which differs by 2Ap above and below 
the thermocline. The vortex loop is discretized into N elements identified by the index 
i and each containing a, circulation ri along the loop. The velocity of each element due 
to the vortex loop can then be calculated from 

where dl, is the length of element j and rij is the vector connecting elements i and j. 
Additional contributions to this velocity come from all other straight and infinitely 
long (F, 9 1 case) vortex lines which pass through the vortex loop a t  nodes xt. The 
circulation carried by those vortex lines is denoted by ui = K( (1,0,0), i.e. they have 
circulation along the vortex-loop axis only, and the additional velocity contribu- 
tion can be calculated from 

1 N ujx  rij z -  -- 
2nj,j=+i (rij)2 ’ 

where the ui are obtained from 
(9) 

AP 
dt P o  
3 = g - A& AZi = $(Zi+, - &,). 

The last two relations were derived in (7). With these equations, the vortex-loop and 
vortex-line position can be updated and the entire process can be repeated over the 
time period of interest. 

2.3. Formulation of then i t e  core radius 
It was pointed out by Choiin (1973) that, unless a finite core radius is incorporated, 
the accuracy of the discrete vortex element method does not improve with an incre- 
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ment of the total number of vortex elements. The finite core radius employed in 
the present study uses an algebraic relation which not only satisfies the physical 
smoothing requirement, but also eliminates a test to find out whether the point of 
concern falls within the core radius or not. 

The denominator in the velocity relation (9) is modified by replacing lri,12 by 
Irr,12+r$, where rc is the core radius. For lriil < rc, and therefore in the core, the 
velocity grows linearly with respect to the distance lriil but falls off as l/lrr,l if 
lr2,1 9 re. Similarly, the denominator in the three-dimensional relation (8) is replaced 
by Ir2,1s+<, so that 

2.4. Formulation of the reseeding procedure 

One problem which is commonly associated with a Lagrangian calculation is the 
continual addition or removal of particles from the calculation. Depending upon the 
physical nature of the problem, particles may accumulate and yield unrealistically 
high gradients of flow variables or the number of particles in a region of interest may 
become so low that no realistic representation of the flow is possible. From the point 
of view of maintaining a uniform accuracy, a reseeding procedure which can rearrange, 
add or delete particles as necessary must be applied. It is also desirable from an 
economic point of view since a number larger than a limiting number of vortices will 
not improve accuracy, but a number smaller than a limiting number of vortices will 
reduce accuracy. Without being committed to using a large number of particles 
throughout the computation, there is no alternative but to adopt a reseeding pro- 
cedure. Since the vortices do carry physical variables (vorticity) the reseeding pro- 
cedure must be based upon the laws of conservation. For the present method, the 
quantities conserved are the vorticity and the centroid of the vorticity. 

The method adopted here is to impose an equal separation distance between the 
vortices at  all times. This separation distance can either be constant or vary as a 
function of time. Then the vortices are rearranged according to this requirement and 
t,he physical variables, circulation and spatial positions are interpolated using a cubic 
spline interpolation polynomial over all the vortices. Through numerical experiments 
which will be discussed in 3 3, it is evident that this reseeding procedure is effective in 
removing ‘spurious’ numerical errors. The reason for the success of using an ‘equal 
separation distance’ between the discrete vortex elements is explained in Fink & Soh 
(1974). 

The conservation laws are well satisfied since the interpolation procedure inter- 
polates over all the vortices at  once. Naturally, the centroid of the circulation is also 
an invariant if the circulation profile is not altered by the spline fit. 

3. Results and discussion 
3.1. Initiation of the calculation 

Assuming that the interior of the vortex loop, which can be imagined to be a jet or 
wake, is of constant density and that the vortex loop is located on a thermocline as 
shownin figures 4 and 5, the density differs by A p  between the interior and the exterior 
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FIGURE 6. Effects of core radius on the velocity profile generated by a vortex ring. -@-, F ,  = 0; 
-0- - - 0.3; -A-, P ,  = 0.8; -v-, r, - - 1.0. , -*’-, P ,  = 1.5; -@-, F ,  = 2.0. , r, - 

ambient state. The infinitely long vortex lines are drawn from the loop to simulate 
the vorticity generated by the density stratification; initially these long vortex 
lines carry no circulation. 

To initiate the calculation, ri and its location are required. Assuming the vortex 
loop to be a vortex ring initially, we can calculate the velocity on the vortex-ring plane 
from the following integlal: 

r j - n  ( I - u c ~ ~ o ) ~ B  
u(r)  = - 

2nr0 ( I - 2 2 a c o s O + a ~ + ~ ) ~ ’  

where r is the undetermined circulation, ro the ring radius, a = r/ro and O is the 
azimuthal angle around the vortex-ring axis. The unknowns are the core radius 
Fc = rc/ro, I’ and ro, and can be determined from the following conditions: 

(i) The velocity at the vortex-ring centre should be matched to a jet or wake 
velocity profile. 

(ii) For the momentumless case, the integral 

/oau(r)rdr = 0 

must be satisfied. 
(iii) ro is approximately the propeller radius for the wake of a self-propelled body, 

the jet radius for a jet or the body radius for the wake of a towed body. 
A calculation was carried out to determine those parameters. Figure 6 shows the 

effect of the core radius on the velocity profile u(r )  normalized by u(0) on the vortex 
axis. For the case Fc = 0, the velocity diverges near the centre of the vortex ring, as 
expected, and too small a core radius results in an unrealistic velocity profile. It was 
found that Fc = 0.8 yields the best profile for a momentumless case and rc is set to be 
0.8 henceforth for the momentumless calculation. Similarly, one finds that Fc = 2 
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Vzr=4.5 

- 1  c 
FIGURE 7. Configurations of the vortex loop as a function of time t .  N is the Brunt-Vaisiilii 
frequency, V z  is the cross-shear. (a) With circulation, viewed at an angle, I? # 0, N = 0, 
V z  = 0, r t /Da  = 14.4. (b) With density stratification, viewed along the axis of the vortex ring, 
N # 0, r = 0, VZ = 0. (c )  With cross-shear, viewed along the axis of the vortex ring, VZ # 0, 
r = O , N  = 0. 

yields the wake velocity profile for a towed body, or conversely, the velocity profile of 
tl jet. For all the cases reported here, we have used a core radius Fc = 0.8. 

3.2 .  Numerical results 
Numerical calculations were performed for both momentum-carrying and momentum- 
less vortex loops to simulate wakes generated by towed or self-propelled bodies. 
Results of these calculations can be directly carried over to jets; only the sense of 
the vorticity is reversed. Since the vortex-loop representation of the wake of a towed 
body differs from that of a self-propelled body only in the core radius, in this study 
we shall concentrate on momentumless vortex loops, i.e. the wake of a self-propelled 
body. 

With the set of initial conditions chosen in the last section, we have carried out 
three sample calculations to demonstrate individual effects of the circulation I’, 
density stratification N and cross-shear 5. Results are shown and discussed in 
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FIGURE 8. Width and height of a collapsing constant-density mixed region in a stably 
stratified medium. -, numerical result; ----, experimental data (Wu 1969). 

3 3.2.1. Section 3.2.2 discusses the formation of‘ tip vortices’ for a circulation-carrying 
vortex loop in either a stratified or a cross-shear environment. Section 3.2.3 describes 
the wake rotation as a result of the cross-shear vortex loop. 

3.2.1. Individual effects of circulation, density stratijication and cross-shear. Figure 7 
shows the result of a calculation designed to identify the effect of the circulation r, 
density stratification N and cross-shear V,  on the evolution of the vortex loop. In  
figure 7 (a),  a vortex loop with radius ro is given a r / U D  of 0.06 and a D of 2r0; the 
result shows that its motion is along the vortex-ring axis without variation. The 
calculation was carried out to rt/D2 = 14.4 and figure 7 (a) is a view from an angle to 
the vortex-ring axis. 

Figure 7 ( b )  shows the ‘collapse ’ of the long vortex cylinder depicted in figure 5 a t  
the initial time and nine Brunt-Vaisala periods later. The Brunt-Vaisala frequency 
N is defined as (gAp/poro)* = 0 . 0 0 6 ~ - ~  and the circulation I’ and cross-shear V,  are 
set to zero. A more detailed discussion of this case will be made in figure 8. 

Figure 7 ( c )  shows the ‘collapse’ of a vortex loop in a cross-shear environment. In  
this case, I‘ = 0, N = 0 while the cross-shear V,  = 0.003s-l. Results a t  V,t = 0,  1.5 
and 4.5 are shown; they indicate a simple stretching along the shear. Owing to this 
stretching mechanism, we shall find interesting results to be discussed in the following 
sections. 

The collapse of a stratified wake has been a subject of study for some time, the 
experimental study by Wu (1969) having been the most illustrative one. In figure 8 
we show the wake width, or the lateral dimension of the vortex loop, vs. time N t .  
Wu’s experiment was done in a linearly stratified medium while the calculation was 
performed for a two-layer case which is characterized by the time scale (gApn/p,ro)4 
and is equivalent to (gAp/p,r,)* = (gpildpo/dz)* for a linearly stratified medium. 
We have transformed Wu’s results to conform with the notation used in the calcu- 



Vortex-ring evolution in  a strati$ed and shearing environment 465 

4 -  

(4 N t =  13 

b 
- 

4- 1 

Vzt= 1.5 
vzt = 3.5 

- 2  

I I I 1 I 1 
-6 - 4  - 2  0 2 4 

FIQURE 9. Evolution of a vortex ring in a stably stratified medium or a cross-shear environment. 
The movement of the vortex loop is indicated by the Nt or V.zt value. (a) r # 0, N # 0, 
V z  = 0, viewed along and from above the vortex-ring axis. (b) I? # 0, N # 0, V z  = 0, viewed 
from below the vortex-ring axis. (c) r # 0,  N = 0, V z  # 0, viewed along the vortex-ring 
axis. 

lation. Fair agreement exists between them, although Wu’s result is higher than 
the calculated result. This may be attributed to the turbulent diffusion, which is 
not considered in the calculation. Also shown is KkmBn’s (1940) prediction of the 
advance velocity of a gravity current, which also agrees reasonably with the calcu- 
lated result. These comparisons validate the ‘numerical experiment as an accurate 
redizat ion. 

16 F L M  84 
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3.2.2. Combined effects of circulation and density stratijication or cross-shear. With 
the general results shown in the last section in mind, we shall discuss the following 
two interesting cases in this subsection: 

(i) r / U D  = 0.06, N = O - O O ~ S - ’ ,  V,  = 0, so that FD = U / N D  = 32, 

(ii) r / U D  = 0.06, N = 0, V,  = 0 . 0 0 3 ~ - ~ ,  so that U/V,D = 64. 

Figure 9 shows the evolution of the vortex loop for those two cases. Figure 9 (a)  shows 
the formation of ‘tip vortices’ a t  the two lateral ends at (Nt) t i ,  = 13 after the vortex 
loop has ‘collapsed’ at  ( N t ) ,  = 5.6. At the initial stage of ‘collapse’ shown in figure 
7 (b) ,  the vertical height of the centre portion is reduced, so that near there acceleration 
will take place. Once the opposite sides of the vortex loop fall within the core radius 
Fc = 0.8, the vorticity is cancelled owing to the solid-body rotation within the core 
radius. The only surviving component of vorticity is in the vertical direction; the 
only vorticity is then concentrated at the lateral ends, and the subsequent motion is 
a simple vortex flow around that vertical vortex. Observation of these ‘tip vortices) 
is reported by Pao & Lin (1973). Conceivably, these large horizontal eddies should 
also exist in the deep ocean. Figure 9 ( b )  shows the same series, but from a different 
angle. 

Knowing the basic mechanism present for the vortex-loop ‘ collapse ’ in a stratified 
medium and the similar ‘ collapse ’ in a shear flow, one can conceive that the formation 
of ‘tip vortices’ is also possible in a shear flow. Figure 9(c) shows the vortex-loop 
evolution in a shear flow. Since the basic time scale in the problem is Vz1 ,  the time 
scale for collapse to take place is about (Vzt)c = 1.5 and for the formation of a tip 
vortex is (V, t ) t ip  = 3.5. Notice that ( V Z t ) t i p / ( ~ t ) ,  z (iVt)tip/(Nt),, which indicates that 
the basic mechanism is identical in the two cases of ‘collapse ’ and formation of ‘tip 
vortices’. 

Another important observation here is that for either case vorticity is ‘transferred’ 
from the scale corresponding to the initial vortex-ring dimension to an arbitrarily 
small scale represented by the tip-vortex dimension, though one should note that, in 
the numerical experiment, the smallest scale is limited by the core radius Fc, which is 
80 yo of the initial ring radius. Still, one can conceive that in reality the vortex loop 
will cascade into smaller and smaller vortex loops simulated by the ‘tip vortices’. 

3.2.3. Combined effect of circulation, density stratijication and cross-shear. When both 
density stratification and cross-shear are applied to a vortex ring, its evolution is 
quite complex. Figure 10 shows the result; initially, at N t  = 0, the vortex loop is a 
vortex ring, carrying r / U D  = 0.06. Also, N = 0.006s-‘ and V,  = 0.003s-l, therefore 
the Richardson number Ri = (N/Vz)a = 4 and FD = 32 are specified. The evolution 
can be demonstrated from three views; figure lO(a) shows a view along the 5 axis; 
figures 10(b)  and ( c )  show views along the y and z axes. The scales are close but not 
exactly the same. Figure lO(a) illustrates the vortex-loop rotation as a function of 
time, at a rate equal to the cross-shear V,. The reduction of vertical height is a result 
of both stable stratification and cross-shear. Formation of tip vortices is apparent at 
Nt = 4.8. Rotation of the vortex loop is clearly demonstrated by following the same 
point P on the vortex loop in figures 10 (a) ,  ( b )  and (c ) .  One can notice also the ‘twisting ’ 
motion shown at  Nt = 1.3 and beyond in figures 10(b)  and (c). This is a result of the 
Magnus force f = - u x w, where u is the local velocity (in this case is primarily the 
cross-shear velocity) and w is the circulation carried along the vortex loop. Figure 11 
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illustrates this force along various parts of the vortex loop. The top and side views 
show the ‘twist’ motion imposed on the vortex loop. It is conceivable that severe 
shear will transform a vortex ring into a ‘ stellarator ’ or ‘figure of eight ’ geometry 
(Kress 1969), as seen a t  Nt = 1.3 in figures 10(b)  and ( c ) ,  in which one vortex loop is 
essentially divided into two smaller loops. 

4. Conclusion 

follows. 

tion, so that the surviving vertical vorticity will form the ‘horizontal vortices’. 

Important observations from this numerical experiment can be summarized as 

(i) A stable density stratification destroys all vorticity in the non-vertical direc- 

(ii) The effects of cross-shear can be summarized as follows. 
(a) Cross-shear also ‘collapses’ a vortex loop and leads to the formation of ‘tip 

(b)  The Magnus force will ‘twist’ the vortex loop into a ‘figure of eight ’ geometry 
vortices ’. 

16-2 
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FIGURE 11. The Magnus-force effect of cross-shear on a vortex loop. 

and bisect it into two smaller vortex loops which in turn will be bisected into even 
smaller vortex loops. 

(c) A vortex loop rotates in a cross-shear at  an angular velocity equal to the cross- 
shear V,. 

(d) Cross-shear is the primary source for both the energy cascading mechanism 
and generation of turbulence by the conversion of mean-flow vorticity into smaller- 
scale vortices, i.e. randomization of the mean flow. 
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computer programming. The author also wishes to thank both Dr J. Robert Beyster 
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